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ABSTRACT 
The foundation of the theory of functionally graded plates with simply supported edges, under a 

Friedlander explosive air-blast are developed within the classical plate theory (CPT).  Within the development 

of the theory, the two constituent phases, ceramic and metal, vary across the wall thickness according to a 

prescribed power law. The theory includes the geometrical nonlinearities, the dynamic effects, compressive 

tensile edge loadings, the damping effects, and thermal effects. The static and dynamic solutions are developed 

leveraging the use of a stress potential with the extended-galerkin method and the runge-kutta method. 

Validations with simpler cases within the specialized literature are shown. The analaysis focuses on how to 

alleviate the unwanted effects of large deformations through proper material selection and the proper gradation 

of the constituent phases or materials. 

 

1. INTRODUCTION 
During combat situations, the structure of army military 

vehicles may have to structurally endure the effects of blast 

loading. Advances in FGM’s which combine the properties 

of two dissimilar materials has been a motivating factor in 

viewing these types of materials as a viable alternative to the 

current isotropic metallic structures being utilized in the hull 

and armor plating. FGM’s are microscopically 

inhomogeneous with thermo-mechanical properties which 

vary smoothly and continuously from one surface to another. 

These graded structures allow the integration of dissimilar 

materials like ceramic and metals that combine different or 

even incompatible properties such as hardness and 

toughness. 

 

In this paper, the foundation of the nonlinear theory of 

functionally graded plate-type structures under an explosive 

air-blast is developed. An approximate solution 

methodology for the intricate nonlinear boundary value 

problem is devised, and results that are likely to contribute to 

a better understanding of the structural behavior under an 

explosive  blast with beneficial implications towards their 

improved design and exploitation are presented. 

 

It is the author’s intent  within this paper to fill in some 

major gaps currently existing within the specialized 

literature.  

 

2. BASIC ASSUMPTIONS AND PRELIMINARIES 
The plate mid surface is referred to a cartesian orthogonal 

system of coordinates (x,y,z), while z is the thickness 

coordinate measured positive  in the upwards direction from 

the mid-surface of the plate with h being the uniform plate 

thickness and y is directed perpendicular to the x-axis in the 

plane of the plate. See figure 1 below.  

 

 

 

 

 

 

 

 

 

   

 

             

 

Figure 1: A simply supported functionally graded plate  

 Shown in 2-D under an explosive blast. 

 

 

The nonlinear elastic theory of FG Plates is developed 

using the classical plate deformation Theory [6]. It is also 
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assumed that the FG plate is made-up of ceramic and metal 

phases whose material properties vary smoothly and 

continuously across the wall thickness.  By applying the rule 

of mixtures, the material properties such as Young’s 

Modulus, Density, and Poisson’s Ratio are assumed to vary 

across the wall thickness as  

 

                       zVPzVPzP mmcc  , (1a) 

 

In which Pc and Pm denote the temperature-dependent 

material properties of the ceramic and metallic phases, of the 

plate, respectively and may be expressed as a function of 

temperature [7, 9] as 

 

)+++1+(= 3
3

2
21

1-
1-0 TPTPTPTPPP  (1b) 

 

Where, 𝑃0 , 𝑃−1, 𝑃1 , 𝑃2 , and 𝑃3 are the coefficients of 

temperature T(K) and are unique to the constituent materials. 

 

𝑉𝑐 𝑧  and 𝑉𝑚  𝑧  are correspondingly, the volume fractions 

of the ceramic and metal respectively, fulfilling the relation 

 

                                1 zVzV mc . (3) 

 

By virtue of (3), Eq. (1a) can be expressed as  

 

              ( ) ( ) )(+)](-)([=, TPzVTPTPTzP mcmc . (4) 

 

By observation, one can deduce that for 𝑉𝑐 𝑧 = 0, 

𝑃 𝑧, 𝑇 = 𝑃𝑚 (𝑇) and for  𝑉𝑐 𝑧 = 1, 𝑃 𝑧, 𝑇 = 𝑃𝑐(𝑇). As a 

result, 𝑉𝑐 𝑧  𝜖 [0,1]. 
 

Two Scenarios of the grading of the two basic component 

phases, ceramic and metal, through the wall thickness are 

considered.  

 

Case (1): The phases vary symmetrically through the wall 

thickness, in the sense of having full ceramic at the outer 

surfaces of the plate and tending toward full metal at the 

mid-surface.  For this case, 𝑉𝑐(𝑧) can be expressed as 
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Where the signum function is defined as 
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N  is termed the volume fraction index which provides the 

material variation profile through the plate wall thickness, 
 0 ≤ 𝑁 ≤ ∞ . A pictorial representation of the distribution 

of the constituent materials are shown below in figure 2. 

 

 

 

 

 

 

 

 

 

 

     Figure 2: Distribution of the constituent materials           

        through the plate thickness for the symmetric case. 

 

Case (2): The phases vary non-symmetrically through the 

wall thickness, and in this case there is full ceramic at the 

outer surface of the plate wall and full metal at its inner 

surface. For this case, 𝑉𝑐 𝑧  can be expressed as 
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Below is a pictorial representation of the antisymmetric case 

shown in figure 3. 

 

 

 

 

 

 

 

 

 

  

     Figure 3: Distribution of the constituent materials           

        through the plate thickness for the antisymmetric case. 

 

 

It should be noted that in contrast to case (2), where there 

exists coupling between stretching and bending, such 

coupling is not present for the symmetric case (1).  Also, for 

the purposes of simplicity the Poisson’s ratio will be 

assumed to be constant throughout the plate structure. From 

equations (1) - (7), the effective material properties of a FG 

plate can be expressed for the antisymmetric case as 
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And for the symmetric case as 
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 (9) 

 

                                      𝜈 𝑧, 𝑇 = 𝜈(𝑇)    (10) 

 

Where, 

 

                      𝐸𝑐𝑚 = 𝐸𝑐 − 𝐸𝑚 ,  𝜌𝑐𝑚 = 𝜌𝑐 − 𝜌𝑚  (11) 

 

3. KINEMATIC EQUATIONS 
 

3.1 The 3-D Displacement Field  
Consistent with the classical plate theory [6], the 

distribution of the 3-D displacement quantities through the 

wall thickness can be expressed as 
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Within these equations,  𝑢, 𝑣, 𝑤  are the 3-D displacement 

quantities along the  𝑥, 𝑦, 𝑧  directions, respectively. While, 

𝑢0, 𝑣0 , and 𝑤0 are the 2-D displacement quantities of the 

points on the mid-surface.  

 

3.2 Non-Linear Strain-Displacement Relationships 
The nonlinear strain displacement relationships across the 

plate thickness at a distance from the mid-surface take the 

form [2, 3, 6]  
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Substitution of Equations (12a-c) into Equations (13) results 

in the strain measures across the plate thickness in terms of 

the 2-D displacement quantities of the mid-surface of the 

plate expressed as 
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Where, 
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In the above expressions,  휀𝑥𝑥
0 , 휀𝑦𝑦

0 , 𝛾𝑥𝑦
0  , are referred to as 

the membrane strains and  휀𝑥𝑥
1 , 휀𝑦𝑦

1 , 𝛾𝑥𝑦
1   are referred to as 

the flexural bending strains which are also known as the 

curvatures. 

 

4. CONSTITUTIVE EQUATIONS 
The stress-strain relationships for a state of plane stress is 

expressed as [10] 
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The material stiffnesses, 𝑄𝑖𝑗  𝑧 ,  𝑖 = 1,2,6  are given by [9, 

10] 
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The standard force and moment resultants of a plate are 

defined as 
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With the use of Equations (13) –(17), the stress resultants 

and stress couples are related to the strains by [3] 
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In which  𝐴 ,  𝐵 ,  and  𝐷  are the respective in-surface, 

bending-stretching coupling, and bending stiffnesses. For the 

case of symmetric FG Plates,  𝐵 = 0, since there is no 

bending-stretching coupling. The global stiffness quantities, 

𝐴𝑖𝑗 , 𝐵𝑖𝑗 , and 𝐷𝑖𝑗 , (i, j=1,2,6) are defined as 
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In view of Equations (8), (9), (10), (16), and (19), the 

global stiffness quantities are determined as 
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where  for the antisymmetric case, 
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And for the symmetric case, 
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5. GOVERNING EQUATIONS 
Hamilton’s principle is used to derive the equations of 

motion and the boundary conditions. It is formulated as 
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Where 𝑡0 and 𝑡1are two arbitrary instants of time. 𝑈 denotes 

the strain energy, 𝑉 denotes the work done by surface 

tractions, edge loads, and body forces, and 𝐾 denotes the 

kinetic energy of the 3-D body of the structure, while 𝛿 is 

the variational operator.  In Equation (23), the strain energy 

is given by 
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where Ω0 denotes the mid-surface area of the panel. The 

work done by external  loads is expressed as 
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In the above expression, 𝑃𝑡 𝑥, 𝑦  is the distributed force at 

the top surface  𝑧 = ℎ 2  , 𝑃𝑏 𝑥, 𝑦  is the distributed force at 

the bottom surface  𝑧 = −ℎ 2  ,  𝜍𝑥𝑥
∗ , 𝜍𝑦𝑦 ,

∗ 𝜍𝑥𝑦
∗ , 𝜍𝑦𝑥

∗   are the 

specified stress components along the plate edges, and 
 𝛿𝑢, 𝛿𝑣  are the virtual displacements along the normal and 

tangential directions, respectively, along the plate edges. 

Considering only the transversal inertia of the structure, the 

kinetic energy is given by  
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Which implies that the the variation in kinetic energy is 

expressed as 
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where 𝜌 𝑧  is the mass per unit volume.  

 

Considering Equation (23) in conjunction with Equations 

(24)-(27) , along with the constitutive equations (15), the 

strain-displacement relationships, equations (14), and 

carrying out the integration through the thickness, 

integrating by parts whenever feasible, using the expression 

of global stress resultants and stress couples, while retaining 

only the transversal load, transverse inertia, and transverse 

damping results in  
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In the above equation,  𝑣𝑥 ,𝑣𝑦 , and 𝐼0   (referred to as the 

inertia) are given by 
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Invoking the arbitrary and independent character of 

variations 𝛿𝑢0, 𝛿𝑣0, 𝛿𝑤0 , 𝛿 𝜕𝑤0 𝜕𝑥   , and  𝛿 𝜕𝑤0 𝜕𝑦   one 

obtains the equations of motion and as a by-product the 

boundary terms or conditions. This results in three equations 

of motion in terms of the global stress resultants and stress 

couples and  four boundary conditions along the plate edges. 

These equations of motion and boundary conditions can be 

respectively expressed as 
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The boundary conditions become 

 

Along the edges 𝑥 = 0, 𝐿1 

 

 

Either    xxxx NN  (32a) 

 

or       00 u  (32b) 

 

Either     xyxy NN  (33a) 

 

or       00 v  (33b) 

 

Either    xxxx MM  (34a) 
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or      00 




x
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    (34b)  

 

Either      xxxx VV  (35a) 

 

or     00 w                           (35b) 

                   

Along the edges 𝑦 = 0, 𝐿2 

 

Either     yxyx NN  (36a) 

 

or       00 u  (36b) 

 

Either     yyyy NN  (37a) 

 

or       00 v  (37b) 

 

Either    yyyy MM  (38a) 

 

or     00 




y

w
    (38b)  

 

Either      yyyy VV  (39a) 

 

or     00 w   (39b)       

 

For the case of all edges simply supported and freely 

movable the boundary conditions are as follows: 

 
 xxxxxyxx NNNMw ,00  on 1,0 Lx   

            yyyyyxyy NNNMw ,00  on 2,0 Ly   (40) 

 

It should be mentioned for clarification sake that for 

compressive edge loading 𝑁𝑥𝑥
∗ = −𝑁𝑥𝑥

0 , 𝑎𝑛𝑑 𝑁𝑦𝑦
∗ = −𝑁𝑦𝑦

0 . 

 

6. AIR-BLAST LOADING 
 
With the ever increasing demands for increased safety for 

the solders in the field to operate structurally sound vehicles 

in the event of an IED or some other type of explosive, it is 

imperative that an understanding of the structural response 

of various components within military combat vehicles 

under an explosive blast be understood so that measures can 

be taken from a design standpoint to ensure the durability 

and survivability of these components. To begin to achieve 

this understanding, the type of explosive loading considered 

here is a free in-air spherical air burst. Such an explosion 

creates a spherical shock wave which travels radially 

outward in all directions with diminishing velocity. The 

form of the incident blast wave from a spherical charge is 

shown in figure 4. Where 𝑃𝑆0 is the peak overpressure above 

ambient pressure, 𝑃0 is the ambient pressure, 𝑡𝑎  is the time 

of arrival, 𝑡𝑝  is the positive phase duration of the blast wave, 

and 𝑡 is the time. The waveform shown in figure 4 is  

 
 

          Figure 4:  Incident pressure profile of a blast 

             wave.  

 

given by an expression Known as the Friedlander equation 

and is given as  
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 In equations (41) and (42) Z is known as the scaled 

distance given by 𝑍 = 𝑅 𝑊1 3   with R being the standoff 

distance in meters and W  being the equivalent charge 

weight of TNT in terms of kilograms. Also, 𝛼 is known as 

the decay parameter which is determined by adjustment to a 

pressure curve from a blast test.  

 

For the conditions of standard temperature and pressure 

(STP) at sea level, the time of arrival 𝑡𝑎 , and the positive 

phase duration 𝑡𝑝 , can  be determined from [4]  
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Where 𝑡1 represents either the arrival time or positive phase 

duration for a reference explosion of charge weight 𝑊1, and 

𝑡 represents either the arrival time or positive phase duration 

for any explosion of charge weight 𝑊. The determination of 

the standoff distance for any charge weight W follows a 

similar reasoning. The application of these relationships is 

known as cube root scaling. It should be understood that in 

applying these relationships that the standoff distances are 

themselves scaled according to the cube root law.  

 
7. SOLUTION METHODOLOGY 

To satisfy the first two equations of motion, equations 

(31a,b), a stress potential will be utilized which allows the 

in-plane stress resultants to be  expressed by letting 
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The third equation of motion, equation (31c), can be 

expressed in terms of two unknown variables, the stress 

potential 𝜙 and the transverse displacement 𝑤0. To 

accomplish this, a partial inversion, of equation (18), the 

details of which are not presented here, needs to be carried 

out. Performing a partial inversion  results in [4] 
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Where, 
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Using Equations (44), (45), and (46) and simplifying, 

Equation (31c) takes the form  
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Where, 
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This gives one governing equation with two unknowns, 

𝑤𝑜  and 𝜙. One more equation is needed in terms of the same 

unknowns which will give two equations in terms of two 

unknowns which can then be solved. This will come from 

the compatibility equation. By eliminating the in-plane 

displacements from the strain-displacement relationships, 

equations (14) the relationship between the in-plane strains 

and the transversal deflection known as the compatibility 

equation can be shown to be given by 
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In view of equations (44) , (45), and (46), the compatibility 

equation is expressed as  
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In equations (47) and (49),  ∇2= 𝜕2 𝜕𝑥2 + 𝜕2 𝜕𝑦2  where 

∇ is referred to as the Laplacian operator.  

 

Equations (47a) and (49) are the basic governing 

equations used to investigate the structural response of FG 

plates under external excitation loading. For the purposes of 

this paper, from this point forward, the thermal terms will be 

discarded. To this end, to solve equations (47a) and (49), the 

approach adopted from [2] will be utilized. In this respect, 

the following functional forms are assumed for 𝑤𝑜  and 𝜙 

[2].  
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Where 𝜆𝑚 = 𝑚𝜋 𝐿1, 𝜇𝑛 = 𝑛𝜋 𝐿2, 𝑚, 𝑛 = 1,2, …  are the 

number of half waves in the x and y directions, respectively, 

and 𝑤𝑚𝑛  𝑡  is the amplitude of deflection. Also, 

𝐴𝑚𝑛  𝑡 , 𝐵𝑚𝑛  𝑡 , 𝐶𝑚𝑛  𝑡 , and 𝐷𝑚𝑛  𝑡  are coefficients to be 

determined. By substituting equations (50a,b) into equation 

(49), the coefficients 𝐴𝑚𝑛  𝑡 , 𝐵𝑚𝑛  𝑡 , 𝐶𝑚𝑛  𝑡 , and 𝐷𝑚𝑛  𝑡     
are determined as 
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By letting, 
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which implies through integration of both sides over the 

plate area that  
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or through integration gives 
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and introduction of equations (50a,b) and (51) into equation 

(47a) and retaining the resulting equation along with the 

unsatisfied boundary conditions in the energy functional and 

applying the Extended Galerkin technique results in the 

following nonlinear differential equation governing the 

structural response of FG plates, under external excitation.  
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Where, 𝑤𝑚𝑛  𝑡  represents the amplitude of deflection of the 

plate as a function of time, 𝑃 𝑚𝑛  𝑡 = 16𝑃𝑡(𝑡) 𝐼0𝜋
2 , 𝜔𝑚𝑛 =

 𝐾𝑚𝑛 𝐼0  is the natural frequency of the FG plate, and 

Δ𝑚𝑛 = 𝐶 2𝐼0𝜔𝑚𝑛  is the non-dimensional damping factor, 

and Ω𝑚𝑛 = 𝐸1 𝜆𝑚
4 + 𝜇𝑛

4 16  . It should be noted that at the 

center of the plate  𝑥, 𝑦 =  𝐿1 2 , 𝐿2 2  , 𝑤𝑚𝑛  𝑡  is equal 

to the maximum deflection of the plate. In these latter 

expressions, 
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Where, 

 

𝜓 = 𝐿1 𝐿2  is referred to as the aspect ratio and Φ =
𝑁𝑦𝑦

∗ 𝑁𝑥𝑥
∗  is referred to as the compressive/tensile edge load 

ratio.  

 

Equation (53) is a nonlinear equation in terms of the plate 

deflections as a function of time. It is interesting to note that 

equation (53) is very similiar to Duffing’s Equation. To 

obtain the plate deflections as a function of time, equation 

(53) is solved using the Fourth-Order Runge-Kutta Method. 

 

8. RESULTS AND DISCUSSION 
To validate the present theory, comparisons are made with 

Akay [1] who considered a step loading excitation of a 

simply supported elastic plate based on a von-karman 

nonlinear theory. To make this comparison the external 

excitation, 𝑃𝑡(𝑡) , expressed as 

 

)]()([)( 0ttHtHPtPt   

 

was applied. H(t) is referred to as the Heaviside Step 

function defined as 𝐻 𝑡 = 1 for 𝑡 ≥ 0 and 𝐻 𝑡 =
0 for 𝑡 < 0.   
 

 

 
 

The geometrical and material properties used were, 

 

1,00635.0,438.21  mhmL  

25.0,/2547,3.70 3  avemm mkgGPaE   
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In addition, the constant pressure and time duration were 

taken as sec2.0,82.48 0  tPaP . Since only a metallic 

isotropic plate was made for comparison, the volume 

fraction index was taken as 2000N which implies fully 

metal. With this in hand, the central deflection time history 

is displayed in Fig 5. The results in this figure reveal close 

agreement between Akay’s finite element method and the 

present analytical/ approximation method employed here in 

the present analysis. 

To illustrate the present approach, a ceramic-metal 

functionally graded plate consisting of Ti-6Al-4V and 

Aluminum Oxide with the following material properties, 

which were adopted from [9], were considered for the 

numerical results presented.  

 

     
2981.0,/kg 4429       GPa, 7.105

26.0,/kg 3750     GPa, 24.320

3
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3
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mm

cc
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The geometrical properties used for the FG Plate are 

m11 L , 121  LL , and unless otherwise stated 

m0254.0h  and the halfwaves, (m,n) = (1,1). In addition, 

the following reference values, in Table 1. were utilized to 

determine the time of arrival and positive phase duration [5].    

 

        Table 1. Airblast Parameters Versus Distance  

        for a One Kilogram  1W  TNT Spherical Air  

        Burst [5]. 

Standoff 

Distance, 𝑅1 

(m) 

Arrival 

Time, 𝑡𝑎1
 

(msec) 

Positive Phase 

Duration, 𝑡𝑝1
 

(msec) 

1.0 0.532 1.79 

 

In Fig 6, comparisons of the central deflection of the plate 

for various voulme fraction indexes is depicted. it can be 

seen that the symmteric functionally graded case with a 

volume fraction index of N=0.5 gives the lowest deflections 

as a function of time, as compared to the fully metal 

isotropic case.  

Fig 7. Is the counter part of Fig 6. With the exception of 

the effect of damping. The effect of damping shows a rapid 

attentuation of the deflections over a very short period of 

time. It is shown that damping plays a major role in the 

decrease of deflections of the plate. 

In Fig 8. It can be seen that the effects of various amounts 

of damping on the central deflections vs time attenuates 

faster as the amount of damping is increased for a fixed 

volume fraction of the constituent materials. The effects of 

the compressive/tensile edge loading on a fg plate for a fixed 

volume fraction index and a fixed amount of damping on the 

deflection-time response is depicted in Fig. 9. It is clear that, 

for tensile edge loading, the magnitudes of the deflections 

decreases in contrast to compressive tensile edge loading 

where the deflections are increased.  

 

 

 

 
 

Fig 10. reveals the effects of the aspect ratio on the 

deflection-time response which indicates that the deflections 
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are larger for smaller aspect ratios than for larger aspect 

ratios. From a design standpoint, utilizing larger aspect ratio 

panels would be more beneficial by give smaller deflections 

under an explosive-type excitation, hence decreased stresses. 

 

 
 
 

 
 

 
 
9. CONCLUDING REMARKS 

A rigorous treatment of functionally graded plates with 

grading in the transverse direction has been studied. 

Validations with a simpler transversal excitation step load 

found in Akay [1], who took a specialized finite element 

approach, has been made. It has been shown that damping 

has an important effect when it comes to the attenuation of 

the deflections. It has also been shown that other factors 

such as the compressive/ tensile edge loading, the aspect 

ratio, and the symmetry of the transverse grading throughout 

the structure plays an important role in the deflection-time 

history of the structure.  

In Fig. 6. It was shown that functionally grading 

inherently reduces the deflections when compared to the 

isotropic metallic case. From a design standpoint, it would 

be appropriate at this point to state that integration of 

functionally graded materials within plate-type structures 

would benefit the structural response of the structure. Also, 

it should be mentioned, although not shown here, that the 

choice of the ceramic and metal constituent materials chosen 

would also have a great impact on the response of the 

structure.  

The idea is to reduce the stresses within the structure 

concerned here. By reducing the magnitude of the 

deflections, the stresses are reduced. It is hoped and realized 

that this present study presented here will give insight into 

some of the factors that can play an important role in the 

structural response of functionally graded plates and fill in 
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some of the fundamental missing gaps within this subject 

area. 
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